60 research outputs found

    Effects of Enamel Fluorosis and Dental Caries on Quality of Life

    Get PDF
    The objectives of this study were to determine the impact of enamel fluorosis and dental caries on oral health–related quality of life (OHRQoL) in North Carolina schoolchildren and their families. Students (n = 7,686) enrolled in 398 classrooms in grades K-12 were recruited for a onetime survey. Parents of students in grades K-3 and 4-12 completed the Early Childhood Oral Health Impact Scale (ECOHIS) and Family Impact Scale (FIS), respectively. Students in grades 4-12 completed the Child Perceptions Questionnaire (CPQ8-10 in grades 4-5; CPQ11-14 in grades 6-12). All students were examined for fluorosis (Dean’s index) and caries experience (d2-3fs or D2-3MFS indices). OHRQoL scores (sum response codes) were analyzed for their association with fluorosis categories and sum of d2-3fs and D2-3MFS according to ordinary least squares regression with SAS procedures for multiple imputation and analysis of complex survey data. Differences in OHRQoL scores were evaluated against statistical and minimal important difference (MID) thresholds. Of 5,484 examined students, 71.8% had no fluorosis; 24.4%, questionable to very mild fluorosis; and 3.7%, mild, moderate, or severe fluorosis. Caries categories were as follows: none (43.1%), low (28.6%), and moderate to high (28.2%). No associations between fluorosis and any OHRQoL scales met statistical or MID thresholds. The difference (5.8 points) in unadjusted mean ECOHIS scores for the no-caries and moderate-to-high caries groups exceeded the MID estimate (2.7 points) for that scale. The difference in mean FIS scores (1.5 points) for the no-caries and moderate-to-high groups exceeded the MID value (1.2 points). The sum of d2-3fs and D2-3MFS scores was positively associated with CPQ11-14 (B = 0.240, p < .001), ECOHIS (B = 0.252, p ≤ .001), and FIS (B = 0.096, p ≤ .01) scores in ordinary least squares regression models. A child’s caries experience negatively affects OHRQoL, while fluorosis has little impact

    Can a Species Keep Pace with a Shifting Climate?

    Get PDF
    Consider a patch of favorable habitat surrounded by unfavorable habitat and assume that due to a shifting climate, the patch moves with a fixed speed in a one-dimensional universe. Let the patch be inhabited by a population of individuals that reproduce, disperse, and die. Will the population persist? How does the answer depend on the length of the patch, the speed of movement of the patch, the net population growth rate under constant conditions, and the mobility of the individuals? We will answer these questions in the context of a simple dynamic profile model that incorporates climate shift, population dynamics, and migration. The model takes the form of a growth-diffusion equation. We first consider a special case and derive an explicit condition by glueing phase portraits. Then we establish a strict qualitative dichotomy for a large class of models by way of rigorous PDE methods, in particular the maximum principle. The results show that mobility can both reduce and enhance the ability to track climate change that a narrow range can severely reduce this ability and that population range and total population size can both increase and decrease under a moving climate. It is also shown that range shift may be easier to detect at the expanding front, simply because it is considerably steeper than the retreating back

    Persistence for stochastic difference equations: A mini-review

    Full text link
    Understanding under what conditions populations, whether they be plants, animals, or viral particles, persist is an issue of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt persistence. One approach to examining the interplay between these deterministic and stochastic forces is the construction and analysis of stochastic difference equations Xt+1=F(Xt,ξt+1)X_{t+1}=F(X_t,\xi_{t+1}) where XtRkX_t \in \R^k represents the state of the populations and ξ1,ξ2,...\xi_1,\xi_2,... is a sequence of random variables representing environmental stochasticity. In the analysis of these stochastic models, many theoretical population biologists are interested in whether the models are bounded and persistent. Here, boundedness asserts that asymptotically XtX_t tends to remain in compact sets. In contrast, persistence requires that XtX_t tends to be "repelled" by some "extinction set" S0RkS_0\subset \R^k. Here, results on both of these proprieties are reviewed for single species, multiple species, and structured population models. The results are illustrated with applications to stochastic versions of the Hassell and Ricker single species models, Ricker, Beverton-Holt, lottery models of competition, and lottery models of rock-paper-scissor games. A variety of conjectures and suggestions for future research are presented.Comment: Accepted for publication in the Journal of Difference Equations and Application

    A mathematical model for the onset of avascular tumor growth in response to the loss of p53 function

    Get PDF
    We present a mathematical model for the formation of an avascular tumor based on the loss by gene mutation of the tumor suppressor function of p53. The wild type p53 protein regulates apoptosis, cell expression of growth factor and matrix metalloproteinase, which are regulatory functions that many mutant p53 proteins do not possess. The focus is on a description of cell movement as the transport of cell population density rather than as the movement of individual cells. In contrast to earlier works on solid tumor growth, a model is proposed for the initiation of tumor growth. The central idea, taken from the mathematical theory of dynamical systems, is to view the loss of p53 function in a few cells as a small instability in a rest state for an appropriate system of differential equations describing cell movement. This instability is shown (numerically) to lead to a second, spatially inhomogeneous, solution that can be thought of as a solid tumor whose growth is nutrient diffusion limited. In this formulation, one is led to a system of nine partial differential equations. We show computationally that there can be tumor states that coexist with benign states and that are highly unstable in the sense that a slight increase in tumor size results in the tumor occupying the sample region while a slight decrease in tumor size results in its ultimate disappearance

    Propagation and blocking in periodically hostile environments

    Full text link
    We study the persistence and propagation (or blocking) phenomena for a species in periodically hostile environments. The problem is described by a reaction-diffusion equation with zero Dirichlet boundary condition. We first derive the existence of a minimal nonnegative nontrivial stationary solution and study the large-time behavior of the solution of the initial boundary value problem. To the main goal, we then study a sequence of approximated problems in the whole space with reaction terms which are with very negative growth rates outside the domain under investigation. Finally, for a given unit vector, by using the information of the minimal speeds of approximated problems, we provide a simple geometric condition for the blocking of propagation and we derive the asymptotic behavior of the approximated pulsating travelling fronts. Moreover, for the case of constant diffusion matrix, we provide two conditions for which the limit of approximated minimal speeds is positive

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    On a free boundary problem for a two-species weak competition system

    Get PDF
    [[abstract]]We study a Lotka–Volterra type weak competition model with a free boundary in a one-dimensional habitat. The main objective is to understand the asymptotic behavior of two competing species spreading via a free boundary. We also provide some sufficient conditions for spreading success and spreading failure, respectively. Finally, when spreading successfully, we provide an estimate to show that the spreading speed (if exists) cannot be faster than the minimal speed of traveling wavefront solutions for the competition model on the whole real line without a free boundary.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
    corecore